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ABSTRACT: In this paper, we study the generalized quaternions, 
,H and their algebraic properties. 

De Moivre's and Euler's formulas for these quaternions in different cases are investigated. The solutions 

of equation 1nq   is discussed mean while it has been shown that equation 1nq  has uncountably many 
solutions for unit generalized quaternions. Finally, the relations between the powers of these quaternions 
are given. 
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INTRODUCTION 

 
 Mathematically, quaternions represent the natural extension of complex numbers, forming an associative 
algebra under the addition and the multiplication. This algebra is an effective way for understanding many aspects 
of physics and kinematics. Nowadays, quaternions are used especially in the area of computer vision, computer 
graphics, animation, and to solve optimization problems involving the estimation of rigid body transformations as 
well. Obtaining the roots of a quaternion was given by Niven, (1942) and Brand, (1942). Brand proved De Moivre’s 

theorem and used it to find n th roots of a quaternion. Using De Moivre’s formula to find roots of a quaternion is 
more convenient. These formulas are also investigated in the cases of dual, split and complex quaternions 
(Kabadayi and Yayli, 2011; Ozdemir, 2009; Jafari, 2013). Whittlesey and Whittlesey, (1990) by the help of Euler's 
formula found the circles in the plane and the sphere in 3-space by means of the exponential expansions. In this 
paper, we briefly recall some fundamental properties of the generalized quaternions, and show that the set of all 
unit generalized quaternions with the group operation of quaternion multiplication is a Lie group of 3-dimension. 

Moreover, we obtain De-Moivre's and Euler's formulas for these quaternions in different cases. We use it to find n -
th roots of a generalized quaternion. Finally, we give some example for the purpose of more clarification. 
 
Preliminaries 
 The Irish mathematician Rowan Hamilton struggled in vain to extend complex numbers to three dimensions.  
Eventually, he realized that it is necessary to go to four dimensions and he invented a new number system called 
the quaternions. Although, Hamilton did not use the ordered pair construction for quaternions, but he was the 
inventor of the pair construction for complex numbers. 

A quaternion, is an ordered pair of complex numbers 1 2,z z  i.e.  

1 2( , ),q z z 1z  and 2 ,z   
with addition and multiplication defined by 

1 2 1 2 1 1 2 2( , ) ( , ) ( , ),z z w w z w z w   
 

* *

1 2 1 2 1 1 2 2 1 2 2 1( , )( , ) ( , ),z z w w z w z w z w z w  
 

and 

( , ) ( ,0)( , ) ( , ), .a z w a z w az aw a  
 

It turns out that multiplication is not commutative. That is, in general for quaternions 
,q r

we have 
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.rq qr  
 
This construction by pairs ties in nicely with the constructions of the rational, real, and complex numbers but is not 
the traditional approach. If we single out three special pairs and attach Hamilton’s notation to them as 

( ,0), (0,1), (0, )i j k   
 

and identify 

( ,0) a ,a a 
 

then we find 

0 1 2 3 0 1 2 3( , ) ia a a a a a i a j a k a       
 

 
which is the form Hamilton used to express quaternions. This form makes it quite clear that quaternions are a four-
dimensional generalization of complex numbers. 
 

The quaternions , ,i j k satisfy the following relations: 
2 2 2 1.i j k i j k     

 In the language of abstract algebra, the quaternions form a noncommutative, normed division algebra over .

The eight-dimensional octonians O can be constructed from pairs of quaternions but there the chain ends. The 

only normed division algebras over are , ,H and O. (Heard, 2006). 
 
Generalized Quaternion Algebra 

 This section summarizes the essentials of the algebra of generalized quaternions. A generalized quaternion 
q

 
is an expression of the form 

0 1 2 3q a a i a j a k   
 

where 0 1 2, ,a a a
 and 3a  are real numbers and , ,i j k  are quaternionic units satisfying the equalities 

2 2 2- , - , - ,

- , - ,

i j k

ij k ji jk i kj

  



  

   
 

and  

- , , .ki j ik Î R     

The set of all generalized quaternions is denoted by  
(Jafari,  2012). We express the basic operations in the 

, ,i j k
form. The addition becomes as 

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

( ) ( )

( ) ( ) ( ) ( )

a a i a j a k b b i b j b k

a b a b i a b j a b k

      

       
 

 
and the multiplication as 

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

( )( )

( )

( )

( )

( ) .

a a i a j a k b b i b j b k

a b a b a b a b

a b a b a b a b i

a b a b a b a b j

a b a b a b a b k

  

 

 

     

   

   

   

   
 

Given 0 1 2 3q a a i a j a k   
, 0a

 is called the scalar part of 
,q

denoted by 

  0 ,S q a
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and 1 2 3a i a j a k 
is called the vector part of 

,q
denoted by  

1 2 3( ) .V q a i a j a k  
 

The conjugate of 
q

is 

0 1 2 3 .q a a i a j a k   
 

The norm of 
q

is 
2 2 2 2

0 1 2 3 .qN qq qq a a a a       
 

The inverse of 
q

 with
0,qN 

 is  

1 1
.

q

q q
N

 

 

Clearly 
1 1 0 0 0 .qq i j k      Note also that qp pq  and 

1 1 1( ) .qp p q    
 
De Moivre’s Formula for Generalized Quaternions 
We investigate the properties of the generalized quaternions in two different cases. 
 

Case 1: ,  are positive numbers. 

Let 
3

GS
 be the set of all unit dual generalized quaternions and 

2

GS
be the set of all unit generalized vectors, that is, 

3

GS { : 1} ,qq H N H    
 

2 2 2 2

G 1 2 3 1 2 3( )
S { ( ) : 1}.

V q
V q a i a j a k N a a a         

 

Theorem 1. Under quaternionic multiplication, 
3

GS  is a Lie group of dimension 3. 

Proof: To show that 
3

GS
with the multiplication is a group, let 

:Hf   be a differentiable function given as 
2 2 2 2

0 1 2 3( ) .f q a a a a     
 

3 1

GS (1)f  is a submanifold of 
H , since 1 is a regular value of function .f  Also, the following maps

3 3 3

G G G:S S S  
sending ( , )q p to 

qp
and 

3 3

G G:S S  sending 
q

to 

1q

 are both differentiable.                                                                                                                                 

Every nonzero generalized quaternion 0 1 2 3q a a i a j a k   
 can be written in the polar form 

(cos sin )qq N u  
 

where 
0cos

q

a

N
 

 
and 

2 2 2

1 2 3
sin

q

a a a

N

  


 


 

. The unit generalized vector u is given by 
 

1 2 3 1 2 3
2 2 2

1 2 3

1
( , , ) ( , , ),u u u u a a a

a a a  
 

 
 

with 
2 2 2

1 2 3 0.a a a    
 

For any 
2

GS ,u
since 

2 1u   we have a natural generalization of Euler's formula for generalized quaternions 
2 3 4

2 4 3 5

1 ...
2! 3! 4!

1 ... ( ...)
2! 4! 3! 5!

cos sin ,

ue u u

u

u

   


   


 

     

       

   

for any real number  . For detailed information about Euler's formula, see (Whittlesey, 1990). 
 

Lemma 1. For any  
2

GS ,u
 we have  
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      1 1 2 2 1 2 1 2cos sin cos sin cos sin .u u u            
 

Theorem 2. (De Moivre's formula) Let cos sinuq e u      be a unit generalized quaternion. Then for any 

integer 
;n
 

cos sin .n nuq e n u n      

Proof: The proof will be by induction on nonnegative integers .n  For 2n   and on using the validity of theorem as 
lemma 1, one can show  

2(cos sin ) cos2 sin2u u       
Suppose that (cos sin ) cos sin ,nu n u n       we aim to show 

1(cos sin ) cos( 1) sin( 1) .nu n u n         
Thus 

1(cos sin ) (cos sin ) (cos sin )

(cos sin )(cos sin )

cos( ) sin( )

cos( 1) sin( 1) .

n nu u u

n u n u

n u n

n u n

     

   

   

 

   

  

   

   
 

The formula holds for all integers ;n  
1 cos sin ,q u     

cos( ) sin( )

cos sin .

nq n u n

n u n

 

 

    

 
 

Special case: If 1,    then Theorem 2 holds for real quaternions, see (Cho,1998). 
 

Example 1.  Let 
1 1 1 1 1 2 1 1 1 1 2

( , , ) cos ( , , )sin
2 2 3 33

q
 

     
   

 
be a unit gen- eralized quaternion. Every  

power of this quaternion is found with the aid of theorem 3. For example, 9-th and 53-th powers are 

9 2 1 1 1 1 2
cos9 ( , , )sin9

3 33

1,

q
 

  
 

  
and 

53 2 1 1 1 1 2
cos53 ( , , )sin 53

3 33

1 1 1 1 1
( , , ).

2 2

q
 

  

  

 

  

 
 

Theorem 3. De Moivre’s formula implies that there are uncountably many unit generalized quaternions 
q

 satisfying  

1nq   for n≥3.  

Proof: For every 
2

GS ,u
the unit generalized quaternion 

2 2
cos sinq u

n n

 
 

 

is of order .n  For 1n  or 
2,n

 the generalized quaternion 
q

 is independent of .u  
 

Example 2. 1

1 1 1 1
( ,0, ) cos sin

2 4 42
q u

 

 
   

 
is of order 8 and 2

1 1 1 1
( ,

2 2
q

 
 

1
, ) cos sin

3 3
u

 


 

  
is of order 6. 

 
 

Theorem 4. Let cos sinq u    be a unit generalized quaternion. The equation nx q  has n  roots, and 

they are  
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2 2
cos( ) sin( ), 0,1,2,..., 1.k

k k
x u k n

n n

    
   

 

Proof: We assume that 
cos sinx u  

 
is a root of the equation ,nx q  since the vector parts of x

 and 

q  are the same. From Theorem 3, we have 

cos sin ,nx n u n    
thus, we find 

cos cos , sin sin ,n n    
 

So, the n  roots of q  are 
2 2

cos( ) sin( ), 0,1,2,..., 1.k

k k
x u k n

n n

    
   

 
The relation between the powers of generalized quaternion can be found in the following theorem. 

Theorem 5. Let q  be a unit generalized quaternion with the polar form cos sin .q u    If 
2

{1},m




  
 

then n pq q  if and only if (mod ).n p m  

Proof: Let 
(mod ).n p m

 
Then we have ,n am p   where .a  

cos sin

cos( ) sin( )

2 2
cos( ) sin( )

nq n u n

am p u am p

a p u a p

 

 

 
 

 

 

   

   
 

cos( 2 ) sin( 2 )

cos sin

.p

p a u p a

p u p

q

   

 

   

 


 

Now suppose cos sinnq n u n    and cos sin .pq p u p    If 
n pq q

 
then we get cosn   

cos p  and sin sin ,n p   which means 2 , .n p a a      Thus 
2

n p a



 

 
or (mod ).n p m  

Example 3. Let 1

1 1 1 1
( ,0, )

22
q

 
 

 
be a unit generalized quaternion. From theorem 4, 

2
8,

/ 4
m




 

 
so we have  

9 17

2 10 18

3 11 19

4 12 20

8 16 24

...

...

...

... 1

...

... 1.

q q q

q q q

q q q

q q q

q q q

  

  

  

    

   
 

Case 2: Let   be a positive number and  be a negative number. 

 In this case, for a generalized quaternion 0 1 2 3 ,q a a i a j a k   
we can consider three different subcases. 

Subcase (i): Let norm of generalized quaternion be positive and the norm of its vector part nega- tive, i.e.  
2 2 2 2 2 2 2

0 1 2 3 1 2 30, 0.q qN a a a a V a a a             
 

In this case, the polar form of 
q

is defined as 

(cosh sinh ),q r w    
with 

2 2 2 2

0 1 2 3 ,qr N a a a a      
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0cosh
q

a

N
 

 
and 

2 2 2

1 2 3
sinh .

q

a a a

N

  


  


 

The unit generalized vector w (axis of quarter- nion) is defined as 
 

1 2 3 1 2 3
2 2 2

1 2 3

1
( , , ) ( , , ).w w w w a a a

a a a  
 

  
 

Special case: If 1, 1,  
2 2 2 2

0 1 2 3 0qN a a a a    
 

and 
2 2 2

1 2 3 0.qV a a a   
 Then the 

q
 is a timelike 

quaternion with spacelike vector part and its polar form is 

(cosh sinh ),qq N    
 

where 1 2 3
2 2 2

1 2 3

1
( , , )a a a

a a a
 

  
 

is a spacelike unit vector in 
3

1E
 and 1.    (Ozdemir, 2006) 

 

Theorem 6. (De Moivre’s formula) Let (cosh sinh )q r w    be a generalized quaternion with 
0, 0.q qN V 

Then for any integer 
,n
we have 

(cosh sinh ).n nq r n w n    

Proof: We use induction on positive integers .n Assume that (cosh sinh )n nq r n w n    holds. Then,  
1

1

1

1

(cosh sinh ) (cosh sinh )

(cosh sinh )(cosh sinh )

[(cosh cosh sinh sinh ) (cosh sinh sinh cosh )

[cosh( 1) sinh( 1) ].

n n

n

n

n

q r n w n r w

r n w n w

r n n w n n

r n w n

   

   

       

 









  

  

   

   
 

Hence, the formula is ture. 
 
Subcase (ii): Let the norm of generalized quaternion be positive and the norm of its vector part positive, i.e.  

2 2 2 2 2 2 2

0 1 2 3 1 2 30, 0.q qN a a a a V a a a             
 

In the case, the polar form of 
q

is defined as 

(cos sin ),q r u    
with 

2 2 2 2

0 1 2 3 ,qr N a a a a      
 

0cos
q

a

N
 

 
and 

2 2 2

1 2 3
sin .

q

a a a

N

  


 


 

The unit generalized vector u (axis of quarter- nion) is defined as 
 

1 2 3 1 2 3
2 2 2

1 2 3

1
( , , ) ( , , ).u u u u a a a

a a a  
 

 
 

Special case: If 1, 1,  
2 2 2 2

0 1 2 3 0qN a a a a    
 and 

2 2 2

1 2 3 0.qV a a a   
 Then the

q
 is a timelike 

quaternion with timelike vector part and its polar form is 

(cos sin ),qq N u  
 

where u  is a timelike unit vector in 
3

1E
 and 1.u u   (Ozdemir, 2006) 

Theorem 7. (De Moivre’s formula) Let (cos sin )q r u    be a generalized quaternion with 
0, 0.q qN V 

Then  

(cos sin ),n nq r n u n    
for any integer 

,n
 

Proof: The proof of this theorem can be done using induction, similarly, to the proof of the Theorem 2. 
  
Subcase (iii): The norm of generalized quaternion is negative, i.e. 



J Nov . Appl Sci., 2 (12): 683-689, 2013 

 

689 
 

2 2 2 2

0 1 2 3 0.qN a a a a      
 

Since 
2 2 2 2

0 1 2 30 a a a a     
 then 

2 2 2

1 2 3 0.a a a    
In the case, the polar form of 

q
is defined as 

(sinh cosh ),q r u    
with 

2 2 2 2

0 1 2 3 ,qr N a a a a      
 

0sinh

q

a

N
 

 

and 

2 2 2

1 2 3
cosh .

q

a a a

N

  


  


 

The unit generalized vector u (axis of quarternion) is defined as 
 

1 2 3 1 2 3
2 2 2

1 2 3

1
( , , ) ( , , ).u u u u a a a

a a a  
 

  
 

 

Special case: If 1, 1   and norm is negative number, i.e. 
2 2 2 2

0 1 2 3 0.qN a a a a    
Then 

 the 
q

 is a spacelike quaternion and its polar form is 

(sinh cosh ).qq N u  
 

where u  is a spacelike unit vector in 
3

1E .
 The product of two spacelike quaternions is timelike. (Ozdemir, 2006) 

 

Theorem 8. (De Moivre’s formula) Let (sinh cosh )q r u    be a generalized quaternion with 
0.qN 

Then for 

any integer 
,n
we have 

(sinh cosh ), .

(cosh sinh ), .

n

n

n

r n u n n is odd
q

r n u n n is even

 

 

 
 

  
Proof: The proof follows immediately from the induction.                                                     
  

CONCULSION 
 

 In this paper, we defined and gave some of algebraic properties of generalized quaternion and investigated the 
Euler’s and De Moivre’s formulas for these quaternions in several cases. The relation between the powers of 

generalized quaternions is given in theorem 5. We also showed that the equation 1nq   has uncountably many 
solutions for any general unit generalized quaternion (Theorem 4). 
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